
GUIA TRIGONOMETRIA

FUNCIONES TRIGONOMÉTRICAS

Utilizaremos un triángulo rectángulo, para definir las funciones trigonométricas: seno (sen), coseno (cos), tangente (tan).

En un triángulo rectángulo, estas funciones se definen como:

$$\sin \alpha = \frac{cateto\ opuesto}{hipotenusa}$$

$$\tan \alpha = \frac{cateto\ opuesto}{cateto\ adyacente}$$

$$\cos \alpha = \frac{cateto \ adyacente}{hipotenusa}$$

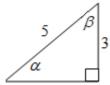
FUNCIONES TRIGONOMÉTRICAS INVERSAS:

$$\cos \alpha = \frac{hipotenusa}{cateto\ opuesto} = \operatorname{cosecante} \qquad \qquad \sec \alpha = \frac{hipotenusa}{cateto\ adyacente} = \operatorname{secante}$$

Función Inversa del seno (sen = sin)

$$\cot \alpha = \frac{cateto\ adyacente}{cateto\ opuesto} = \operatorname{cotangente}$$

Función Inversa de la Tangente (tan = tg)


Aquí se puede conocer las funciones sen α y cos α , para poder calcular las otras funciones, veamos por qué:						
$\operatorname{cosec} \alpha = \frac{1}{\operatorname{sen} \alpha}$	$\cot \alpha = \frac{\cos \alpha}{sen \ \alpha}$					
$\sec \alpha = \frac{1}{\cos \alpha}$	$\tan \alpha = \frac{sen \alpha}{\cos \alpha}$					

PARA CALCULAR LAS MEDIDAS DE LOS ÁNGULOS, UTILIZANDO TRIGONOMETRÍA, SE UTILIZA "ARC" O "LA FUNCIÓN TRIGONOMÉTRICA ELEVADO A -1".

TABLA	DE RAZ	ZONES T	RIGONO)METRI	ACAS DE	ANGULO	OS NOTABLES	<u>S</u>
a:	0°	30°	45°	60°	90°	180°	270°	
sen	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	
tg	0	$\frac{\sqrt{3}}{3}$	1	√3	\rightarrow co	0	→-co	

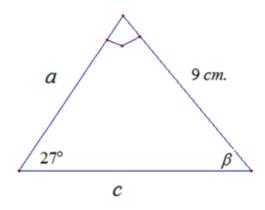
EJEMPLO 1: Un ángulo agudo α tiene $sen\alpha = \frac{3}{5}$. Calcular las restantes razones trigonométricas de este ángulo.

Por teorema de Pitágoras buscamos el otro cateto del triángulo, el cual es 4

Ahora aplicamos las definiciones de las funciones trigonométricas y encontramos:

$$sen\alpha = \frac{3}{5}$$

$$\cos\alpha = \frac{c.ad.}{hip} = \frac{4}{5}$$


$$\tan \alpha = \frac{c.op.}{c.ad.} = \frac{3}{4}$$

Lado fal $\tan te = x = ?$

$$\alpha = ?$$

$$\beta = ?$$

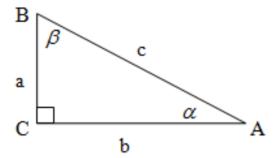
EJEMPLO 2: En el siguiente triangulo rectángulo, calcular el valor de $\, {\bf a} \, ; \, {\bf c} \, ; \, \, eta \,$

EJERCICIOS

- 1) Si $\cos \beta = \frac{\sqrt{7}}{4}$, encuentra las otras funciones trigonométricas. Entrega los valores racionalizados.
- 2) Si $\cos \beta = 0.2$, encuentra las otras funciones trigonométricas. (Utilizar todos los decimales)
- 3) Si $\tan \alpha = \frac{5}{9}$, encuentra las otras funciones trigonométricas. Entrega los valores racionalizados.
- 4) Resolver los triángulos rectángulos para los datos dados. Usa calculadora.

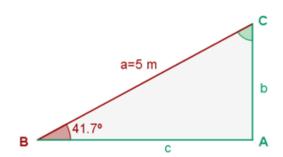
a)
$$\alpha = 24^{\circ} \text{ y c} = 16.$$

b)
$$a = 32,46$$
 $y b = 25,78$


c)
$$\alpha = 24^{\circ} \text{ y a} = 16$$

d)
$$\beta = 71^{\circ}$$
, c = 44

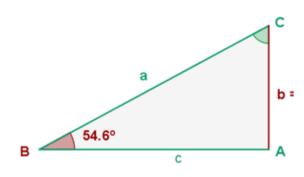
e)
$$a = 312,7$$
; $c = 809$


f)
$$b = 4.218$$
; $c = 6.759$

g)
$$\beta = 81^{\circ} 12^{\circ}$$
; $a = 43.6$

EJERCICIOS RESUELTOS

5) De un triángulo rectángulo ABC, se conocen a = 5 m y B = 41.7°. Resolver el triángulo.


$$C = 90^{\circ} - 41.7^{\circ} = 48.3^{\circ}$$

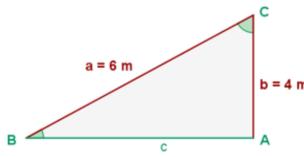
$$b = 5 \cdot \text{sen} 41.7^{\circ} = 3.326m$$

$$c = a \cdot \cos B$$

$$c = 5 \cdot \cos 41.7^{\circ} = 3.733 m$$

6) De un triángulo rectángulo ABC, se conocen b = 3 m y B = 54.6°. Resolver el triángulo.

$$C = \frac{b}{tgB}$$

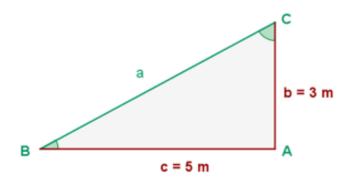

$$c = \frac{b}{tgB}$$
 $c = \frac{3}{tg54.6^{\circ}} = 2.132m$

$$a = \frac{b}{\operatorname{sen} B}$$

$$a = \frac{b}{\text{sen } B}$$
 $a = \frac{3}{\text{sen } 54.6^{\circ}} = 3.68 m$

$$C = 90^{\circ} - 54.6^{\circ} = 35.4^{\circ}$$

7) De un triángulo rectángulo ABC, se conocen a = 6 m y b = 4 m. Resolver el triángulo.

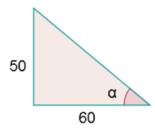


$$C = \arccos \frac{4}{6} = 48.19^{\circ}$$

$$c = a \cdot senC$$

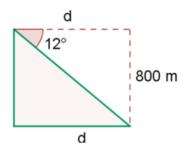
$$c = 6 \cdot sen 48.19^{\circ} = 4.47 m$$

8) De un triángulo rectángulo ABC, se conocen b = 3 m y c = 5 m. Resolver el triángulo.


$$C = \text{arc} tg \frac{5}{3} = 59.04^{\circ}$$

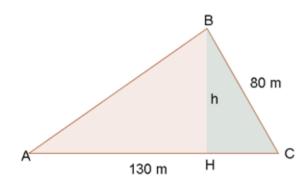
$$B = 90^{\circ} - 59.04^{\circ} = 30.96^{\circ}$$

$$a = \frac{c}{\operatorname{sen} C}$$


$$a = \frac{c}{\text{sen } C}$$
 $a = \frac{5}{\text{sen } 59.04^{\circ}} = 5.831 m$

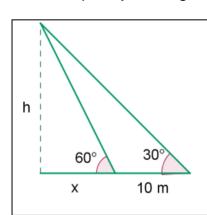
9) Un árbol de 50 m de alto proyecta una sombra de 60 m de larga. Encontrar el ángulo de elevación del sol en ese momento.

$$tg = \frac{50}{60} = \frac{5}{6}$$
 ; $\alpha = 39.8^{\circ}$


10) Un dirigible que está volando a 800 m de altura, distingue un pueblo con un ángulo de depresión de 12°. ¿A qué distancia del pueblo se halla?

$$tg12^{\circ} = \frac{800}{d}$$

$$d = 3763.70 \text{ m}$$


11) Calcular el área de una parcela triangular, sabiendo que dos de sus lados miden 80 m y 130 m, y forman entre ellos un ángulo de 70°.

$$h = 80 \cdot sen 70^{\circ}$$

$$A = \frac{130.80.80 \cdot \text{sen} 70^{\circ}}{2} = 4886.40 \text{m}^{2}$$

12) Calcula la altura de un árbol, sabiendo que desde un punto del terreno se observa su copa bajo un ángulo de 30° y si nos acercamos 10 m, bajo un ángulo de 60°.

$$tg\,30^{\circ} = \frac{h}{10+x} \quad \frac{\sqrt{3}}{3} = \frac{h}{10+x} \quad tg\,60^{\circ} = \frac{h}{x}$$

$$tg 60^{\circ} = \frac{h}{x}$$

$$\sqrt{3} = \frac{h}{x}$$

$$10\sqrt{3} + \sqrt{3} \times = 3h$$

$$\frac{-\sqrt{3}x = -h}{10\sqrt{3}} = 2h \qquad h = 5\sqrt{3}$$

$$10\sqrt{3} = 2h$$

$$h = 5\sqrt{3}$$