PERIMETRO, AREA Y VOLUMEN

AD	ÁREA	PERÍMETRO
CUADRAD (T)opel lado (L)	A= L X L	P=L+L+L+L
0	ÁREA	PERÍMETRO
RECTANGUI	A= b x h	P=b+b+h+h
altura (h)	ÁREA	PERÍMETRO
base (b)	$A = b \times h$	P=L+L+L
tado(L) Dagonal menor (d)	ÁREA	PERÍMETRO
Diagonal mayor (D)	A= D x d	P=L+L+L+L
= /= 7£	ÁREA	PERÍMETRO
pase (p)	A= b x h	P=b+b+h+h
base menor(b)	ÁREA	PERÍMETRO
base mayor (B)	A= <u>h(B x b)</u> 2	P=B+b+L+L
3 0	ÁREA	CIRCUNFERENCIA
Diámetro (d)	$A = \pi \times r^2$	C = 7₹ x d
0+5	ÁREA	PERÍMETRO
a a potema	A= <u>p x a</u> 2	P=Lx#lados

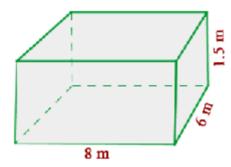
Perímetros y áreas de figuras planas	Perímetro	Area
Triángulo b h c	a + b + c	<u>b · h</u> 2
Paralelogramo b	2 • (a + b)	b • h
Rectángulo b	2 • (b + a)	b∙a
Cuadrado	4 • a	a ²
Rombo d d	4•a	<u>D · d</u> 2
Cometa d D b	2 • (b + a)	<u>D · d</u> 2
Trapecio a h C B	B + b + a + c	(B + b) • h
Círculo	2 • π • r	π • r ²

FIGURA	NOMBRE	SIMBOLOS	PERIMETRO	AREA
	Pentágono	l = lado a = apotema n = número de lados	$P = n \cdot l$	$A = \frac{P \cdot a}{2}$
	Hexágono	l = lado a = apotema n = número de lados	$P = n \cdot l$	$A = \frac{P \cdot a}{2}$

a	Heptágono	l = lado a = apotema n = número de lados	$P = n \cdot l$	$A = \frac{P \cdot a}{2}$
	Octágono	l = lado a = apotema n = número de lados	$P = n \cdot l$	$A = \frac{P \cdot a}{2}$
	Eneágono	l = lado a = apotema n = número de lados	$P = n \cdot l$	$A = \frac{P \cdot a}{2}$
	Decágono	l = lado a = apotema n = número de lados	$P = n \cdot l$	$A = \frac{P \cdot a}{2}$
d1 F2	Corona Circular	d_1 = diámetro mayor d_2 = diámetro menor r_1 = radio mayor r_2 = radio menor	$P. ext.=\pi \cdot d_1$ $P. int. = \pi \cdot d_2$ $P. total = \pi \cdot (d_1 + d_2)$	$A = \pi \cdot \left(r_1^2 - r_2^2\right)$ $A = \pi \cdot \left(d_1^2 - d_2^2\right)$
	Sector Circular	l = longuitud del arco r = radio n = número de grados	$P. = l + 2 \cdot r$	$A = \frac{\pi \cdot r^2 \cdot n}{360}$ $A = \frac{l \cdot r}{2}$
h t	Segmento circular	c = cuerda r = radio h = altura n = número de grados	$P = 0.01745 \cdot r \cdot n + c$	$A = \frac{\pi \cdot r^2 \cdot n}{360} - \frac{c \cdot (r - h)}{2}$

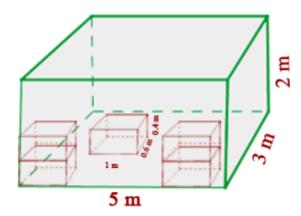
		r = radio	$P = \frac{1}{2} \cdot r \cdot \pi + 2 \cdot r$	$\pi \cdot r^2$
c	Cuadrante	c = cuerda	$1 - \frac{1}{2} \cdot r \cdot n + 2 \cdot r$	$A = \frac{\pi \cdot r^2}{4}$
	Embecadura	r = radio c = cuerda	$P = \frac{1}{2} \cdot r \cdot \pi + 2 \cdot r$	$A = r^2 - \frac{\pi \cdot r^2}{4}$
c				7
Г				
FIGURA	NOMBRE	SIMBOLOS	AREA	VOLUMEN
		a = arista	$A = \sqrt{3} \cdot a^2$	$V = \frac{\sqrt{2} \cdot a^3}{12}$
a a	Tetraedro			12
a				
		a = arista	$A = 6 \cdot a^2$	$V = a^3$
	Exaedro			
a l				
a				
0		a = arista	$A = 2 \cdot \sqrt{3} \cdot a^2$	$V = \frac{\sqrt{2} \cdot a^3}{2}$
a /	Octaedro			3
a				
	Dodecaedro	a = arista	$A = 20,6457 \cdot a^2$	$V = 7,6631 \cdot a^3$
a a	Dodecaedio			
-				
	Icosaedro	a = arista	$A = 8,6605 \cdot a^2$	$V = 2,1817 \cdot a^3$
a A				
Q Q				

d 200	Prisma Cualquiera	$a = arista lateral$ $P = perímetro de la$ $sección recta$ $A_l = área$ $A_b = área de la base$ $h = altura$	$A_{l} = P \cdot a$ $A_{t} = P \cdot a + 2A_{b}$	$V = A_b \cdot h$
	Prisma Recto	$h = altura$ $P = perímetro de la base$ $A_b = área de la base$ $A_l = área$ $A_t = área total$	$A_{l} = P \cdot h$ $A_{t} = P \cdot h + 2A_{b}$	$V = A_b \cdot h$
D b	Ortoedro	$a = l \arg o$ $b = ancho$ $c = altura$ $A_l = \acute{a}rea$ $A_t = \acute{a}rea total$	$A_{l} = 2 \cdot (a+b) \cdot c$ $A_{t} = 2 \cdot (a+b) \cdot c + 2 \cdot a \cdot b$ $= 2ab + 2ac + 2bc$ $D = \sqrt{a^{2} + b^{2} + c^{2}}$	$V = a \cdot b \cdot c$
-	Pirámide Cualquiera	$A_b = $ área de la base $A_l = $ suma de las caras laterales $A_t = $ área total $h = $ altura	$A_t = A_l + A_b$	$V = \frac{1}{3} \cdot A_b \cdot h$
	Pirámide Regular	$A_b = lpha rea \ de \ la \ base$ sup $erior$ $A_l = lpha rea$ $A_t = lpha rea \ total$ $h = altura$ $a = apotema$ $P = perímetro de \ la$ $base$ sup $erior$	$A_{l} = \frac{1}{2} \cdot P \cdot a$ $A_{t} = \frac{1}{2} \cdot P \cdot a + A_{b}$	$V = \frac{1}{3} \cdot A_b \cdot h$


	Tronco de Pirámide Regular	$A_b = lpha rea \ de \ la \ base$ sup $erior$ $A'_b = lpha rea \ de \ la \ base$ inf $erior$ $A_l = lpha rea$ $A_t = lpha rea \ total$ $h = altura$ $a = apotema$ $P = perímetro de \ la$ $base$ sup $erior$ $P' = perímetro de \ la$ $base$ inf $erior$	$A_{l} = \left(\frac{P + P'}{2}\right) \cdot a$ $A_{t} = \left(\frac{P + P'}{2}\right) \cdot a + A_{b} + A_{b}$	$V = \frac{1}{3} \cdot h \cdot \left(A_b + A_b' + \sqrt{A_b \cdot A_b'} \right)$
g lh	Cilindro Cualquiera	A_b = área de la base A_l = área A_t = área total h = altura g = g eneratríz C = p erímetro de la g sección recta	$A_l = C \cdot g$ $A_t = C \cdot g + 2 \cdot A_b$	$V = A_b \cdot h$
h	Cilindro Circular Recto	$h = g = altura o$ $generatriz$ $r = radio de la$ $base$ $A_l = área lateral$ $(área de la base)$ $A_t = área total$	$A_{l} = 2 \cdot \pi \cdot r \cdot h$ $A_{t} = 2 \cdot \pi \cdot r \cdot h +$ $2 \cdot \pi \cdot r^{2} =$ $2 \cdot \pi \cdot r \cdot (h+r)$	$V = \pi \cdot r^2 \cdot h$
h	Cono Circular Recto	$A_l = lpha rea lateral$ $A_t = lpha rea total$ $h = altura$ $g = generatriz$ $r = radio de la$ $base$	$A_{l} = \pi \cdot r \cdot g$ $A_{t} = \pi \cdot r \cdot g + \pi \cdot r^{2} = \pi \cdot r \cdot (g + r)$ $g^{2} = r^{2} + h^{2}$	$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h = \frac{\pi \cdot r^2 \cdot h}{3}$
h . g	Tronco de Cono Circular Recto	$A_l = lpha rea\ lateral$ $A_t = lpha rea\ total$ $h = altura$ $g = generatriz$ $r_1 = radio\ de\ la$ $base\ mayor$ $r_2 = radio\ de\ la$ $base\ menor$	$A_{l} = \pi \cdot g \cdot (r_{1} + r_{2})$ $A_{t} = \pi \cdot g \cdot (r_{1} + r_{2}) + \pi \cdot (r_{1}^{2} + r_{2}^{2})$	$V = \frac{1}{3} \cdot \pi \cdot h \cdot \left(r_1^2 + r_2^2 + r_1 \cdot r_2\right)$

	Esfera	r = radio de la esfera	$A = 4 \cdot \pi \cdot r^2$	$V = \frac{4}{3} \cdot \pi \cdot r^3$
	Cubo	a = lado	$A = 6 \cdot a^2$	$V = a^3$
base	Prisma	P _b = Perimetro de la base A _b = área de la base	$A = (P_b \cdot h) + 2 \cdot A_b$	$V = A_b \cdot h$
r	Semiesfera	r = radio	$A = \frac{4 \cdot \pi \cdot r^2}{2} = 2 \cdot \pi \cdot r^2$	$V = \frac{2}{3} \cdot \pi \cdot r^3$
h R	Casquete Esférico	R = radio h = altura	$\mathbf{A} = 2\pi \cdot R \cdot h$	$V = \frac{\pi \cdot h^2 \cdot (3R - h)}{3}$
nº R	Huso: Cuña Esférica	R = radio n° = número	$A = \frac{4 \cdot \pi \cdot R^2 \cdot n^{\circ}}{360}$	$\mathbf{V} = \frac{4 \cdot \pi \cdot R^3 \cdot n^{\circ}}{3 \cdot 360}$
h	Zona o Segmento Esférico	R = radio $r = radio 1$ $r' = radio 2$ $h = altura$	$\mathbf{A} = 2\pi \cdot R \cdot h$	$\mathbf{V} = \frac{\pi \cdot h \cdot \left(h^2 + 3r^2 + 3r'^2\right)}{6}$

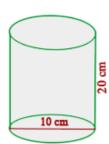
EJERCICIOS: De los siguientes ejercicios, aparte de calcular lo pedido, determinar el perímetro, área y volumen, según lo que falte por calcular, y en los casos que se pueda.


1) Una piscina tiene 8 m de largo, 6 m de ancho y 1.5 m de profundidad. Se pinta la piscina a razón de \$6 el metro cuadrado. Cuánto costará pintarla:

RESP: \$540

$$A = 8 \cdot 6 + 2 \cdot (8 \cdot 1.5) + 2 \cdot (6 \cdot 1.5) = 90 \ m^2$$

 $90m^2 \cdot \$6 = \540


2) En un almacén de dimensiones 5 m de largo, 3 m de ancho y 2 m de alto queremos almacenar cajas de dimensiones 1 m de largo, 0,6 m de ancho y 0,4 m de alto. ¿Cuantas cajas podremos almacenar?

Almacen	Cajas
l = 5 m	$l_1 = 1 m$
a = 3 m	$a_1 = 0.6 \ m$
al = 2 m	$al_1 = 0.4 \ m$

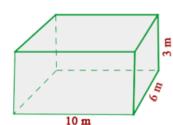
$$V = 5 \cdot 3 \cdot 2 = 30 \ m^3$$
 Almacen $V_1 = 1 \cdot 0.6 \cdot 0.4 = 0.24 \ m^3$ Cajas no de cajas $= \frac{30}{0.24} = 125$

3) Calcula la cantidad de hojalata que se necesitará para hacer 10 tarros de forma cilíndrica de 10 cm de diámetro y 20 cm de altura.

RESPUESTA:

$$A = 2 \cdot 3.14 \cdot 5 \cdot (20 + 5) = 785 \text{ cm}^2$$
 $785 \cdot 10 = 7850 \text{ cm}^2$

$$785 \cdot 10 = 7850 \, cm^2$$


4) La cúpula de una catedral tiene forma semiesférica, de radio 50 m. Si restaurarla tiene un coste de \$300 el m², ¿A cuánto ascenderá el presupuesto de la restauración?

RESPUESTA:

$$A = 2 \cdot 3.14 \cdot 50^2 = 15700 \, m^2$$

$$15700 \cdot 300 = \$4.710.000$$

5) ¿Cuántas losetas cuadradas de 20 cm de lado, se necesitan para recubrir las caras de una piscina, de 10 m de largo, por 6 m de ancho y de 3 m de profundidad?


RESPUESTA:

$$A = 10 \cdot 6 + 2 \cdot (10 \cdot 3) + 2 \cdot (6 \cdot 3) = 156 \text{ } m^2$$

$$A_{\rm u} = 20 \cdot 20 = 400 \, cm^2 : 10\,000 = 0.04 \, m^2$$

$$n^{\circ}$$
 de losetas = $\frac{156}{0.04}$ = 3900

6) Para una fiesta, se han hecho 10 gorros de forma cónica con cartón. ¿Cuánto cartón habrá utilizado, si las dimensiones del gorro son 15 cm de radio y 25 cm de generatriz?

$$A = 3,14 \cdot 15 \cdot 25 = 1177,5 \ cm^2$$

$$1177, 5 \cdot 10 = 11775 \ cm^2$$

7) Un cubo de 20 cm de arista está lleno de agua. ¿Cabría esta agua en una esfera de 20 cm de radio?

RESPUESTA: Si

$$V_c = 20^3 = 8000 \text{ cm}^3$$

 $V_E = \frac{4}{3} \cdot 3,14 \cdot 20^3 = 33493,33 \text{ cm}^3$

8) Si el área de un octaedro es de $^{18\sqrt{3}}$ cm. Calcula la medida de la arista de dicha figura. ¿Cuál sería el volumen de la misma?

RESPUESTA:

$$A = 2\sqrt{3} \cdot a^{2}$$

$$V = \frac{\sqrt{2}}{3} \cdot a^{3}$$

$$18 \cdot \sqrt{3} = 2\sqrt{3} \cdot a^{2}$$

$$V = \frac{\sqrt{2}}{3} \cdot 3^{3}$$

$$V = \frac{\sqrt{2}}{3} \cdot 27$$

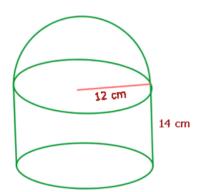
$$V = \frac{\sqrt{2}}{3} \cdot 27$$

$$V = \sqrt{2} \cdot 9$$

9) Un cubo de Rubik, cuya área lateral es de 9 cuadrados y cada cuadrado tiene 0,8 cm de lado. Calcular su área y su volumen.

Cubo de Rubik	Cara Lateral		
	2,4 cm 0,8 cm 1 2 3 4 5 6 7 8 9	$a = 2,4 cm$ $A = 6 \cdot a^{2}$ $A = 6 \cdot (2,4)^{2}$ $A = 6 \cdot 5,76$ $A = 34,56 cm^{2}$	$a = 2,4 cm$ $V = a^{3}$ $V = (2,4)^{3}$ $V = 13,824 cm^{3}$

10) Calcula el volumen que ocupa la siguiente casa.


Para calcular el volumen que ocupa la casa, sumamos el volumen del ortoedro más el volumen de la pirámide.

$$A_B = 10 \cdot 8.5 = 85 \text{ m}^2$$

$$V_p = \frac{85 \cdot 1.5}{3} = 42.5 \text{ m}^3$$
 $V_o = 10 \cdot 3 \cdot 8.5 = 255 \text{ m}^3$

$$V_T = V_P + V_O = 255 + 42.5 = 297.5 \text{ m}^3$$

11) Calcula el área de un silo como el de la figura.

El área del cilindro será la suma del área lateral y el área de la base.

$$A_{cilindro} = 2 \cdot \pi \cdot r \cdot (h+r) = 2 \cdot 3,14 \cdot 12 \cdot (14+12) = 1.959,36 \text{ cm}^2$$

$$A_{semiesfera} = 2 \cdot \pi \cdot r^2 = 2 \cdot 3,14 \cdot 12^2 = 904,32 \ cm^2$$

$$A_{figura} = 1.959,36 + 904,32 = 2.863,68 \text{ cm}^2$$